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Scaling of Spatial Correlations in Cooperative 
Sequential Adsorption with Clustering 
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We examine solvable cooperative sequential adsorption models on a linear 
lattice where adsorption rates produce strong clustering or island formation. We 
show that the spatial pair correlations in this regime assume a scaled form for 
separations comparable to a characteristic length (which diverges in the strong 
clustering limit). This scaled form is also determined directly from consideration 
of appropriate solvable continuum grain growth models. 

KEY WORDS: Coorperative sequential adsorption; nearest-neighbor exclu- 
sion; clustering; pair correlations. 

Random and cooperative sequential adsorption (RSA and CSA) on lattices 
provide examples of nontrivial far-from-equilibrium processes where exact 
analysis is possible (at least in 1D). c~'2) Not  only is the adsorption kinetics 
accessible, but so are the spatial correlations, which exhibit an intrinsically 
nonequilibrium form. t3-4~ Explicit expressions for the pair correlations are 
available for 1D random dimer filling 14'5) and for 1D RSA (of monomers)  
with nearest-neighbor exclusion, t61 which reveal superexponential asymp- 
totic decay. It has also been demonstrated that much more general 1D 
cooperative adsorption processes display this type of  decay ~4) and this 
feature is expected in all dimensions) 2'7~ 

Here we focus on CSA processes where adsorption near previously 
filled sites is strongly enhanced, and the associated clustering produces a 
characteristic or correlation length l c of  many lattice constants. Specifically 
we show that the .pai r  correlations adopt  a scaled form for separations 
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l=O(lc) ,  only crossing over to superexponential decay for l>>lc. This 
scaled form is determined explicitly for two lattice models noting that these 
reduce to solvable grain growth models in the strong clustering limit. 

Below we let P,,, (with m >~ 1) denote the probability of finding a string 
of m empty sites (so 0 = 1 - P, gives the fraction of filled sites or coverage) 
and P ..... ( I ) = P  ...... (1) that of finding strings of m and n empty sites 
(m, n/>1) separated by l lattice vectors [so, e.g., P ...... ( 0 )=  P,,+,,_I and 
P ...... (1 )=P , , ,§  The two-point correlations are then given by C ( I ) -  
P l . l ( l ) - - (P l )  2. Thus C ( O ) = O - O  2 and C(I)--*O as/--* 00. Below, o and �9 
represent an empty and a filled site, respectively. Finally, a denotes the 
lattice constant. 

M O D E L  A 

First consider CSA of monomers at empty sites on a linear lattice with 
rates ki for sites with i occupied nearest neighbors (NN). c2 5.8~ Thus ko, k~, 
and k2 represent rates for island birth, growth, and coalescence, respec- 
tively (see Fig. 1). This model could describe autocatalytic or zipping 
reactions on polymer chains, or the kinetics of first-order transitions, c21 The 
typical size of a cluster of filled sites and also the correlation length, at a 
fixed coverage, will clearly diverge with increasing ratio of growth to birth 
rates, r = k i/ko. 

Since the analysis of this model is described elsewhere, c-" 4.8~ we only 
sketch the key features in the text, relegating further details and some new 
observations to Appendix A. Empty pairs of sites have a o o-Markov 
shielding property here. c2~ This allows one to obtain a closed set of equa- 
tions for P~ and P2 which determine the kinetics. ~8~ Further utilization of 
the shielding property shows that the P2.2(1) satisfy a closed set of equa- 
tions allowing immediate determination. The P2.~(I) couple to themselves 
and P2.2(1) and thus can be determined next. The Pc.1(I) couple to them- 
selves and to P2.~(I) and P2.2(l), so are determined last. The latter are of 
primary interest since they determine the C(I). Although the P2.2(l) may 
be expressed in terms of hypergeometric functions, t4~ the additional steps 

O -  ( N N I O - , - , - , ~ 2 ~ ~ : ,  2 ( - C , ~ ~  

Fig. 1. Schematic for the deposition rates in model A. 
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required to obtain an expression for the C(I) are very cumbersome (with 
the exception noted below). However, effectively exact C(I) obtained by 
numerical integration of the rate equations are shown in Fig. 2. 

Our key observation is that, in the large-r limit, the above lattice 
model coincides with a continuum model where grains are nucleated on the 
line at rate I per unit length (corresponding to ko/a), and thereafter expand 
at constant velocity V (corresponding to k~a). Note that the mapping is 
independent of k2, since coalescence is rare in the strong clustering limit. 
This continuum model was studied in D dimensions independently by 
Kolmogorov, 191 Johnson and Mehl I~~ (JM), and Avrami. t''~ For this 
process in D = 1 the characteristic time r = (IV) - m  (corresponding to 
r-~/2/ko) scales as the time needed to fill a fixed fraction of an initially 
empty line. The characteristic length ( =  (V/I) ~/2 (corresponding to r~/2a) 
scales like the typical grain size, at fixed coverage. 

Exact analysis of the continuum model 19-~21 follows from the idea that 
for a point on the line to be untransformed at time t, no nucleation 
event can have occurred in the space-time "causal cone" (for velocity V) 
extending back from this point. It follows that the transformed (or filled) 
fraction of an initially empty line is given by 0JM= 1 - -exp[- - ( t /z )2] .  The 
two-point correlations for separation x (corresponding to la) can also be 
determined, by an extension of this idea, as ~'2~ CJM(x, t)=F(x/G t/z), 
where 

F(y , s )=exp( -2s2 ) {exp[ (2s -y )2 /4] - l }  if y<2s  
(1) 

= 0  if y>~2s 

Note that CJM(0, t)=0JM(1--0 TM) and that the CJM(x, t) are identically 
zero for separations large enough that the causal cones for the two points 
do not overlap. 

As an immediate consequence of (1), it follows that the lattice correla- 
tions exhibit the scaling form 

C(l)~F(r-l/21, rl/2kot) as r ~  ~ (2) 

Thus the correlation length for the lattice process (corresponding to C/a) is 
given by lc=rm. In Fig. 2 we choose k~ =rko, k2= ( 2 r - 1 ) k o ,  and show 
the convergence as r---, ~ of the lattice model correlations to this nonzero 
scaled form for I/lc<2t/z, for various coverages. For l/lc>>.2t/r, C(l) 
approaches zero a s  r--, ~ (for fixed l/lc) as required, and decays super- 
exponentially as l--* ~ (for fixed r). 12~) 

Of course the scaling form (2) for the correlations can be obtained 
from the exact solution of the lattice problem. We make two observations 
on this point. In the r--* ~ strong clustering limit, with 0 fixed, the 
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Fig. 2. The pair correlation C(I) versus the scaled separation 1/I c = r-1/21 for model A with 
the rates ko= 1, k I =r, and k2=2r-1 ,  where r=  10 (squares), 10 2 (diamonds), and 10 3 
(circles). Here 0=0. 3ML (left), 0.5ML (center), and 0.7ML (right). The solid line is the 
r --* oo limit. 

probabilities of finding an empty site and an empty pair coincide (in other 
words, the probability of finding a filled neighbor of an empty site 
vanishes), so P 2 . 2 ( l ) - ( P 2 )  2 and C(1) must coincide [ to  within 0( r -1 /2 ) ] .  

Indeed an asymptotic analysis of the hypergeometric expression for the 
former (41 does demonstrate convergence to the scaled form (1). Another  
useful observation draws on a result of Mityushin (see ref. 13 and 
Appendix A): if the ki form an arithmetic progression, i.e., k, = r k  o and 
k2 = ( 2 r -  1 )ko,  then only a single empty site is required to shield. While 
this yields somewhat simplified kinetics (as discussed in detail in ref. 3), 
the most dramatic and as yet unexploited simplification is seen in the 
determination of the correlations, which allows us to confirm directly the 
scaling form (1). See Appendix B. 

M O D E L  B 

Next we consider a model for CSA of monomers  with N N  exclusion 
on a linear lattice, where the adsorption rates ki  now depend on the num- 
ber i of filled second N N  sites. ('4-t6) Here k o, k , ,  kz  correspond to the birth, 
growth, and coalescence of double-spaced islands of filled sites, respectively 
(see Fig. 3). Note  that islands have a degeneracy of two, to which we can 
assign labels or phases = and fl, say (see Fig. 3). Island coalescence as a 
result of two growing islands impinging is only possible if two islands are 
in phase. For  example, after two fl-phase islands impinge, the center empty 
site in ..o �9 o �9 o o o �9 o �9 o. .  fills at rate k2, thus forming a larger fl-phase 
island. When out-of-phase islands (an 0t-phase and a fl-phase island) 
meet, a permanent  domain or  antiphase boundary  is formed, as in 
..o �9 o �9 o o �9 o �9 o ... Thus the final jammed state of this model is nontrivial. 
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Fig. 3. Schematic for the deposition rates in model B. Island phases = and fl are indicated. 

This model mimics precursor-mediated island-forming chemisorption, 
where the adlayer typically has a superlattice structure, c~61 Again the 
correlation length is determined by the ratio of island growth to birth rate, 
r=  k~/ko. Exact analysis follows from a shielding property of quartets of 
empty sites, t~*'~5~ Determination of the pair correlations C(l) is more 
complicated than in model A only in detail, since now P .... (l) with m, n ~< 4 
must be considered, t4~ It is clear that here the C(l) will alternate in sign just 
as for an equilibrium lattice-gas model with NN repulsive interactions (or 
as in the antiferromagnetic Ising model). 

For large r, behavior should again be described by a continuum model 
where grains are nucleated randomly at constant rate I (corresponding to 
ko/a) and thereafter spread at constant velocity V (corresponding to 2kt a). 
The difference from model A is that, upon nucleation, each grain is ran- 
domly assigned one of two phases, ~ or fl, say (corresponding to the two 
phases of the double-spaced islands in the lattice model). Upon meeting, 
grains of like phase merge and those of opposite phase form a permanent 
domain boundary. The spatial correlations for this "two-state" Johnson- 
Mehl model t~2"~61 can also be determined exactly, tl2~ Here one starts by 
specifying pair probabilities PJMtx l) for two points of various phases 7, ~ , , ~  , 

fi= c< or fl separated by distance x (corresponding to la) at time t. By 
symmetry, one has PJ=~ = P~.~ and PJr = P ~ .  These quantities are more 
complicated than the" pair probabilities PJ-~i(x, t) for the standard JM 
model, but are related by 

PJM(x, t) J M  = P=.=(x, t) + PJp~(x, t) + PJ~(x,  t) + JM ep.=(x, t) (3) 

Associated pair correlations are defined by CJM=--P~M--pJMp TM (SO 
)"~ " )' 2 6 

J M  J M  J M  J M  J M  J M  - -  C=.= = Cp.# and C =,~ = Cp.=), where P~. = P~ - { 1 - exp[ - (t/r) ] }/2 - ~, 
say, with r = ( I V )  -~/2 as above. Since P'IM(x, O[3)=1 at t = ~ ,  one can 
further show the "antisymmetry" property C J=.~ = C ~.~ = - C  J=.~ = - C  Jp~ at 
t = oo, a result that we shall exploit below. After reduction of the appro- 
priate results in ref. 12, one obtains 

J M  C~.~(x, t )= [F(x/~, t/z) + G(x/~, t/z) ] / 4 -  C~(x/~, t/~)/2 
(4) 

C JM=.p(x, t) = [F(xl~, t/r) - G(x/~, t /r)]/4 - Co(x/~, t/T)/2 
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with F defined as in model A, 3 =  (V/I) ~/2 as before, and 

G(y, s) = 2~b if y = 0 

( ! "  du;" dw+I, iduI: '  dw) e -s' ..... ' I]/2 . | '  - -  U . I - -  .1' 

f" + 2  d u ( u - y ) e x p ( - u  2) if O < y < s  
Y 

= dwe -s(y" ..... ~ if s < y < 2 s  
,/2 u 

= 0  if y>~s (5) 

where S(y, u, w) = (3u 2 + 3w 2 -  2uw + 2yu + 2 y w -  y2)/4. The function G 
J M  J M  can be easily evaluated numerically. Finally note that C=.=+ Ca.a+ 

C~t, fl.ji _JM cJMfl,• reduces to C JM in (1) as required. 
Specific connection with the lattice model is more complicated here. 

One must  first note that having two sites filled with 1 even (odd) in the 
lattice model corresponds to having two points covered by the same 
(different) phase in the con t inuum model. Thus, since Ce = C ~  + Caa and 
Co = C~e+ Ca=, one concludes that, as r ~  ~ ,  the lattice model correla- 
tions scale as 

C(I) ~ Ce( (2r)-1/21, (2r)l/2ko t) f o r / e v e n  
(6) 

Co( (2r)-l/21, (2r)l/2ko t) for I odd 

not ing that the lattice coverage 0 corresponds to ~b (recalling that the 
islands are double-spaced). Again the choice of k2 does not  affect behavior 
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�9 Fig. 4. The pair correlation C(I) versus the scaled separations I/1r = (2r)-1/21 for model B 
with the rates k o = 1, k t = r, and k 2 = 2 r -  1, where r = 10" (squares), 103 (diamonds), and 104 
(circles), at 0.11ML (left) and at saturation (right). The solid line is the r--* oo limit. 
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as r---, oo, where island coalescence is rare. The scaled forms on the RHS 
of (5) satisfy C e ( l = O ) = 8 ( l - O ) ,  C o ( 1 = 0 ) = - 8  2, and C e ( t = o o ) =  
- C o ( t  = or) for al l / ,  using the above "antisymmetry" property. 

In Fig. 4 we show the convergence as r ~ oo of the lattice model 
correlations (obtained from numerical integration of the rate equations, 
starting with an empty lattice) to the corresponding JM form at two 
different coverages. We have used a "Mityushin rate choice," kt = rk o and 
k2 = ( 2 r - 1 ) k  o, for which only triplets of empty sites are required for 
shielding (see Appendix A). The observation that this choice of adsorption 
rates simplifies the shielding requirements (for model B) is new. 

In summary, we have obtained the analytic scaling forms for the pair 
correlations in exactly solvable CSA models in the limit of strong cluster- 
ing. This was achieved via consideration of appropriate continuum grain 
growth models. One might naturally extend this analysis to consider solv- 
able 1D CSA models where islands have every Mth  site filled (here we only 
treat M =  1 and 2). Consideration of appropriate M-state JM models (~'-) 
reveals that the C(I) adopt one (positive) scaling form for 1=0  (mod M) 
and another (negative) form for all other l # 0  (mod M). There is natural 
interest in higher dimensions where the CSA models are not solvable, but 
the scaling form of the correlations can be determined exactly by virtue of 
the solvability of generalized JM models in all dimensions. The JM models 
must be "tuned" to incorporate appropriate island shape and possibly non- 
constant expansion velocity. For 2D models of interest in chemisorption, 
simulation studies have revealed scaling behavior entirely analogous to the 
corresponding solvable 1D models discussed above. (~61 

APPENDIX A: EMPTY-SITE SHIELDING, HIERARCHICAL 
TRUNCATION, AND THE "'MITYUSHIN-TYPE'" 
REDUCTION 

Consider CSA models of monomer adsorption on a linear lattice with 
range M -  1 exclusion, and where the adsorption rates ki with i = 0, 1, and 
2 depend on the number i of filled Mth  NN sites. It is well known c2"ta) that 
strings of 2M consecutive empty sites can shield, allowing exact truncation 
of rate equations. One can further show that in fact only 2 M - 1  empty 
sites are required for shielding when one chooses a "Mityushin-type" set of 
rates, forming an arithmetic progression. 3 One first considers the rate equa- 
tions for the prol:;abilities P,,, with rn/> 2M - 1: 

If the deposition rates for configurations of one filled Mth NN site are k t and k~, say, for 
deposition at the right or left of the filled site, then the condition k o - k ~ - k '  ~ +k2=0 
produces a Mityushin-type reduction of shielding requirements. 
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-- dP2M - l/dt = (k2 - 2k i ) P2M - 1 -- 2(ko -- 2kl + k2) P2M 

+ (ko-2kl  +kz) PZM+I 
M - - I  

+ 2  ~ [(ko-kl)P(2M_t~+y+l+klP(2M_t)+i ] 
j = O  

and 

M - - I  

-dP,,,>~2M/dt= [ m - 2 M ]  koP., + 2 
jffiO 

(A.l)  

[(ko-kl)P,,,+j+l +klP,,,+j] 

(A.2) 

Clearly, (A.1) reduces to the form of (A.2) for the Mityushin rates, and the 
"shielding identity" P,,+j=QP,,, with Q=exp(-kot ) ,  consistent with 
(A.2) for m t> 2M, is then also satisfied for m = 2 M -  1. 

The above analysis does not guarantee that  the shielding reduction 
extends to the probabilit ies P ...... (/) = P .... (l). Next we explicitly verify that  
indeed such an extension holds for M =  1, and comment  on the M >  1 
cases. 

For  M =  1, one can use empty-double t  shielding to write any P .... (/), 
with l>/2,  in terms of Pl.t(l) ,  P2.1(l), and P2.2(l) only. 1~'41 The latter satisfy 
a closed set of rate equations (3'4) 

-dPt.  l(l)/dt = 2{k2Pl. 1(l) + (kl - k2) P2.1(l) 

+ [ k l - k 2 + ( k o - 2 k ~ + k : ) Q ] P 2 . ~ ( l - 1 ) }  (A.3) 

-dP2.j(l)/dt = l-(2kl + k 2 )  + (ko - k t ) Q ]  P2.1(l) 

+ (ko -k t )  QP2.1(I- 1 ) +  (kl - k2)  P2.2(1) 

+ [ ( k l - k : ) +  ( k o -  2k~ + k z ) Q ]  P2.2(1- 1) (A.4) 

and 

-dPz.2(l) /dt  = 2{ [2k, + (ko-  kl)Q] P2.2(1) + (ko - k , )  QP2.2( l -  1)} 
(A.5) 

For  the Mityushin rate choice, terms containing the combinat ion  
k o - 2 k l + k  2 drop out, and the coefficients k o - k l  and k l - k 2  are 
identical. It  is then a trivial mat ter  to show that (A.3)--(A.5) are consistent 
with the identities P:.2(l)=Q:Pl, l(l ) and P2.1(l)=QP~,l(l). Substitution 
of these identities into (A.3) immediately yields a closed set of equations 
for Pl.t(l).  
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For  M >  1, the t reatment  is entirely analogous.  One again proves 
consistency of the shielding proper ty  of ( 2 M - 1 ) - t u p l e t s  of empty  sites 
with the identities P .... (l) = Q.,-~2M- l~p2M_ ~,,,(l) for m ~> 2 M - -  1 (and any 
n t> 1 ) and P.,.,,(I) = Q,,-~2M-IIp.,.2M - 1(1) for n/> 2 M - -  1 (and any m t> 1 ). 

APPENDIX  B: T W O - P O I N T  CORRELATIONS IN M O D E L A  
W I T H  M I T Y U S H I N  RATES 

Here one can solve the closed set of rate equations for the PLy(l) 
derived in Appendix A, using a s tandard generating function technique, c41 
Alternatively, one can note that  here P2.2(l)= Q2PL~(I), so an expression 
for PLy(l) follows directly from that obtained previously for P2,2(l) for 
general rate choices t41 (which is independent of k2). Using either approach  
to determine C(I), one obtains (for an initially empty  lattice) 

C(I = O) = Q2r- l e~Zr-- Z~l - Q I 

C(I = 1 ) = QC(I = O) 

C(I >1 2 )  = Q l 4 r  - 21elZr- 2~tl - Oq-(2 r _ 2) t -  l( 1 -- Q)t -  l/( l _  2)! ] 

x {I~ dp [ 1 - ( 1 - Q ) p ] 2 - Z r ( 1 - p ) ' - 2  

_ dpe~,_r-Zl~l-elp(1 _ p ) 1 - 2  (B.1) 

Asymptot ic  analysis of  (B.1), e.g., via steepest descent, confirms reduction 
to the scaled form in Eq. (1)  for l " l c = r  ~/2. For  analysis of the l--.  oo 
behavior  at fixed r it is more convenient to expand C(I>~ 2) as 

Q2-4re(2-2r)(I-Ql[(2r--2)l-Z(l -- Q ) 1 - z ( I - 2 ) ! ]  C(I~> 2) 

= ~ [ ( 2 - 2 r ) ! / / ( 2 - 2 r - k ) ! k ! -  (2--2r)k /k!]  
k = O  

- I~ _p)1-2 x (Q 1)k dp pk(1 

= ( / - - 2 ) !  ~. [ ( 2 - 2 r ) ! / ( 2 - 2 r - - k ) ! - - ( 2 - - 2 r ) * ]  
k = O  

x [ ( Q -  l ) k / ( l + k  - 1)!] (B.2) 
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using j~dppk(1-p)t-2=k!(l-2)!/(l+k-1)!. The term k = 2  leads the 
sum giving 

C(l)~Q4r-2er as l ~ o o  (B.3) 

It is interesting to note ~2~ also that, for the Mityushin rate choice, the 
filled-cluster size distribution can be completely determined in terms of P, 
and Pt.l(l) as a consequence of the shielding property of a single empty 
site. 
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